
Azo-coupling and Arylation Reactions of Co-ordinated Polyolefins with Arenediazonium Ions

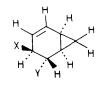
By NEIL G. CONNELLY,* ANDREW R. LUCY, and MARK W. WHITELEY (Department of Inorganic Chemistry, University of Bristol, Bristol BS8 1TS)

Summary Reaction of arenediazonium ions with [Fe-(CO) $L_2(\eta^4$ -polyene)] [L = CO or P(OMe)_3, polyene = cyclo-octatetraene or cycloheptatriene], and subsequent deprotonation gives either a zo-coupled or arylated compounds such as [Fe(CO) {P(OMe)_3}_2(\eta^4-C_8H_7N_2C_6H_4F-p)] and [Fe(CO)_3(\eta^4-C_8H_7C_6H_4NO_2-p)] respectively. THE reaction between an arenediazonium ion and a transition metal compound usually results in co-ordination at the metal centre although one-electron oxidation, insertion, or tetrazene complex formation, *etc.* can also occur.¹ We now report that arenediazonium ions react with co-ordinated polyolefins such as cot (cyclo-octatetraene and cht (cycloheptatriene) to give azo-coupled or arylated products.

SCHEME. i, $[N_2C_6H_4R-\rho]$ [BF₄] (R = F or NO₂) in CH₂Cl₂, n = 1 or 2; ii, $[N_2C_6H_4NO_2-\rho]$ [BF₄] in acetone, n = 0; iii, Al₂O₈ or NaHCO₈; iv, pyridine; v, Me₃NO,2H₂O. M = Fe(CO)_{3-n}{P-(OMe)₃}_n.

The complex $[Fe(CO)_{3-n} \{P(OMe)_3\}_n(\eta^4\text{-cot})]$ reacts rapidly with $[N_2C_6H_4R-\rho][BF_4]$ in CH_2Cl_2 $(n = 1, R = NO_2, 0$ °C, 90 min, 45%; n = 2, R = F, -78°C, 40 min, 40%) to give the yellow salt $[Fe(CO)_{3-n} \{P(OMe)_3\}_n(\eta^5\text{-}C_8H_8N_2\text{-}C_6H_4R-\rho)][BF_4]$ (1) via C-N bond formation; ¹H and ¹³C n.m.r. spectroscopy† verified that the iron is bonded to a monosubstituted cyclo-octatrienyl ring (Scheme). By contrast, the tricarbonyl $[Fe(CO)_3(\eta^4\text{-cot})]$ is efficiently arylated by $[N_2C_6H_4NO_2-\rho][BF_4]$ (acetone, -20°C, 15 min, 49%) to give the yellow, bicyclo[5.1.0]octadienyl complex $[Fe(CO)_3(\eta^5\text{-}C_8H_8C_6H_4NO_2-\rho)][BF_4]$ (2, Scheme).

Complex (1) is readily deprotonated on Brockman Activity II alumina (n = 2, R = F, 13%) or, more effectively, with NaHCO₃ in 40% aqueous acetone $(n = 1, R = NO_2, 82\%)$ to give purple-black crystals of the fluxional,


substituted-cot compound $[{\rm Fe}({\rm CO})_{3-n} \{{\rm P}({\rm OMe})_3\}_n (\eta^4 - {\rm C}_8{\rm H}_7{\rm N}_2{\rm C}_6{\rm H}_4{\rm R}-p)]$ (3). The symmetry of the room-temperature ¹H n.m.r. spectrum of (3) results from oscillation of the η^4 -bonded metal group between C²C³C⁴C³ and C²'C³'C⁴C³ (Scheme).

In the absence of acetone $(1, n = 1, R = NO_2)$ reacts with aqueous NaHCO₃ to give low yields of a yellow crystalline product [ν (CO) (hexane) 1 993, 1 937 cm⁻¹; cf. (3, n = 1, $R = NO_2$), ν (CO) (hexane) = 2 001, 1 949 cm⁻¹] which is not fully characterised but which mass spectroscopy suggests to be the disubstituted cyclo-octatriene complex [Fe(CO)₂{P(OMe)₃} η^4 -C₈H₈(OH)(N₂C₆H₄NO₂-p)}].

Deprotonation of (2) by pyridine in acetone (30 °C, 30 min, 50%) results in opening of the three-membered ring, and formation of red crystalline [Fe(CO)₃(η^{4} -C₈H₇C₆H₄NO₂-p)] (4) with fluxional properties similar to those of (3). In certain cases (3) or (4) can be isolated directly from the reaction between [N₂C₆H₄R-p]⁺ and [Fe(CO)₃- $_{n}$ {P(OMe)₃} $_{n}$ -(η^{4} -cot)]. Thus [Fe(CO)₃(η^{4} -cot)] and [N₂Ph][BF₄] (acetone, 25 °C, 24 h) give low yields of [Fe(CO)₃(η^{4} -C₈H₇N₂Ph)]. The formation of the azo-coupled product in this reaction reveals that C-N bond formation rather than arylation is not only enhanced by replacement of 'the CO ligands of [Fe(CO)₃(η^{4} -cot)] by P(OMe)₃ but also by using arenediazonium ions with less electron-withdrawing substituents.

Displacement of the arylazo-cot ligand from (3, n = 2, R = F) is effected by Me₃NO,2H₂O in refluxing benzene. The air-stable, yellow-orange crystalline solid (5) (m.p. 86-88 °C, m/e 226) has a variable-temperature (-60 to +55 °C) ¹H n.m.r. spectrum consistent² with the fluxional, mono-substituted cot ring undergoing both inversion and bond shifts.

Free cot and $[N_2C_6H_4R_-p][BF_4]$ (R = F or NO₂) in either water or acetone give neither azo-coupled nor arylated cot derivatives. However, whereas [Fe(CO)₃- $(\eta^4$ -cht)] undergoes reactions similar to those shown in the Scheme, and $C_7H_7N_2C_6H_4NO_2-p$, related to (5), can be

(6) X, Y = OH, $N_2C_6H_4NO_2-p$

cleaved from $[Fe(CO)_3(\eta^{4-}C_7H_7N_2C_6H_4NO_2-p)]$, free cht and $[N_2C_6H_4NO_2-p][BF_4]$ in H_2O give high yields of (6) (orange solid, m.p. 170—172 °C, m/e 259).

We thank the S.R.C. for Research Studentships (to A.R.L. and M.W.W.).

(Received, 6th September 1979; Com. 947.)

 \dagger For the sake of brevity, ¹H and ¹³C n.m.r. spectral data and the results of ¹H-¹H and ³¹P-decoupling experiments, which verify the structures shown in the Scheme, are not given.

¹ D. Sutton, Chem. Soc. Rev., 1975, 4, 443.

² G. I. Fray and R. G. Saxton, 'The Chemistry of Cyclo-octatetraene and its Derivatives,' Cambridge University Press, 1978, pp. 93-94.